Characterization of a Hank's type serine/threonine kinase and serine/threonine phosphoprotein phosphatase in Pseudomonas aeruginosa.

نویسندگان

  • S Mukhopadhyay
  • V Kapatral
  • W Xu
  • A M Chakrabarty
چکیده

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in eye, urinary tract, burn, and immunocompromised patients. We have cloned and characterized a serine/threonine (Ser/Thr) kinase and its cognate phosphoprotein phosphatase. By using oligonucleotides from the conserved regions of Ser/Thr kinases of mycobacteria, an 800-bp probe was used to screen P. aeruginosa PAO1 genomic library. A 20-kb cosmid clone was isolated, from which a 4.5-kb DNA with two open reading frames (ORFs) were subcloned. ORF1 was shown to encode Ser/Thr phosphatase (Stp1), which belongs to the PP2C family of phosphatases. Overlapping with the stp1 ORF, an ORF encoding Hank's type Ser/Thr kinase was identified. Both ORFs were cloned in pGEX-4T1 and expressed in Escherichia coli. The overexpressed proteins were purified by glutathione-Sepharose 4B affinity chromatography and were biochemically characterized. The Stk1 kinase is 39 kDa and undergoes autophosphorylation and can phosphorylate eukaryotic histone H1. A site-directed Stk1 (K86A) mutant was shown to be incapable of autophosphorylation. A two-dimensional phosphoamino acid analysis of Stk1 revealed strong phosphorylation at a threonine residue and weak phosphorylation at a serine residue. The Stp1 phosphatase is 27 kDa and is an Mn(2+)-, but not a Ca(2+)- or a Mg(2+)-, dependent Ser/Thr phosphatase. Its activity is inhibited by EDTA and NaF, but not by okadaic acid, and is similar to that of PP2C phosphatase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ThrH, a homoserine kinase isozyme with in vivo phosphoserine phosphatase activity in Pseudomonas aeruginosa.

Homoserine kinase, the product of the thrB gene, catalyses an obligatory step of threonine biosynthesis. In Pseudomonas aeruginosa, unlike Escherichia coli, inactivation of the previously identified thrB gene does not result in threonine auxotrophy. A new gene, named thrH, was isolated that, when expressed in E. coli thrB mutant strains, results in complementation of the mutant phenotype. In P....

متن کامل

Electron Ionization of Serine and Threonine: a Discussion about Peak Intensities

The present study describes the fragmentation under electron ionization (EI) of gas phase serine and threonine amino acids. Ab initio methods were performed to calculate the fragmentation paths and interpret the mass spectra. The six lowest energy conformers of L-serine, L-threonine and L-allo-threonine were obtained with B3LYP, G3MP2 and MP2 methods. The adiabatic and vertical ionizat...

متن کامل

A novel serine/threonine protein kinase homologue of Pseudomonas aeruginosa is specifically inducible within the host infection site and is required for full virulence in neutropenic mice.

A genetic locus of Pseudomonas aeruginosa was identified that is highly and specifically inducible during infection of neutropenic mice. This locus, ppkA, encodes a protein that is highly homologous to eukaryote-type serine/threonine protein kinases. A ppkA null mutant strain shows reduced virulence in neutropenic mice compared to the wild type. Overexpression of the PpkA protein greatly inhibi...

متن کامل

Theoretical Thermodynamic Study of Solvent Effects on Serine and Threonine Amino Acids at Different Temperatures

The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) of Serineand Threonine amino acids were theoretically studied at different condition (solvents andtemperatures) by using Gussian o3, software. First, the structural optimization of isolated Serine andThreonine were done in the gas phase by using the Hartree-Fock (HF) level of theory with 3-21G, 6-31G and 6-3...

متن کامل

Functional characterization of a serine/threonine protein kinase of Pseudomonas aeruginosa.

Protein kinases play a key role in signal transduction pathways in both eukaryotic and prokaryotic cells. Using in vivo expression technology, we have identified several promoters in Pseudomonas aeruginosa which are preferentially activated during infection of neutropenic mice. One of these promoters directs the transcription of a gene encoding a putative protein kinase similar to the enzymes f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 21  شماره 

صفحات  -

تاریخ انتشار 1999